
提要
角是一種基本圖形,是研究三角形,四邊形等幾何圖形的基礎(chǔ)。角的大小與角的兩條邊的長短無關(guān),角度表示方法很多,要注意頂點處不是一個角時,不能用一個頂點字母表示角。
知識全解
一.角的概念
(1)角的靜態(tài)定義:由公共端點的兩條射線組成的圖形稱為角。這個公共端點稱為角的頂點,這兩條射線稱為角的邊。
(2)角的動態(tài)定義:角也可以看作一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形。
當(dāng)終止位置OB與起始位置OA成一條直線時,所成的角稱為平角,回到起始位置,與OA重合時,所成的角稱為周角。平角=180度,周角=360度。
提示:如果不做特別說明,初中階段所說的角都是指小于平角的角。
二.角的表示

一.角的單位
在實際生活中,有時還需要更精密的角度。因此我們把1度的角60等分,每份就是1份的角,記作1’;把1分的角60等分,每份就是1秒的角,記作1’’,即

提示:在進行度,分,秒的有關(guān)計數(shù)時,首先要明確它是六十進制,不同于我們習(xí)慣的十進制,在進行加減運算與乘除運算時,要按級進行,即分別按度,分,秒計算,不夠減,不夠除的要借位,從高一位借的單位要化為低位的單位后才能運算。在相乘或相加時,當(dāng)?shù)臀坏臄?shù)大于60時要向上一級進位。
一.余角和補角
(1)如果兩個角的和等于90度,那么這兩個角互為余角,簡稱互余;如果兩個角的和等于180度,那么這兩個角互為補角,簡稱互補。
(2)同角(或等角)的余角相等,同角(或等角)的補角相等。
提示:①互補,互余都是指兩個角之間的數(shù)量關(guān)系。只有當(dāng)∠α ∠β=180度時,才能稱∠α與∠β互補;只有當(dāng)∠α ∠β=90度時,才能稱∠α與∠β互余。
②兩個角互補或互余與兩個角的位置無關(guān)系。
③“互為補角或余角”的含義是“兩個角中一個角是另一個角的補角或余角”。例如,∠A ∠B=180度,即∠A是∠B的補角,∠B也是∠A的補角,不能說“∠A是補角”或“∠B是補角”。
方法點撥
類型1 角度的計算
例1 如圖所示,已知:∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90度,求∠AOB的度數(shù)。

【分析】根據(jù)題意設(shè)∠AOC=2x,∠COD=3x,∠DOB=4x,則∠AOB=9x,再根據(jù)角平分線的定義以及∠MON=90度,即可求出∠AOB的度數(shù)。
【解答】設(shè)∠AOC=2x,∠COD=3x,∠DOB=4x,則∠AOB=9x,因為OM平分∠AOC,ON平分∠DOB,所以∠MOC=x,∠NOD=2x,所以∠MON=x 3x 2x=6x
又因為∠MON=90度,所以6x=90度,所以x=15度,所以∠AOB=135度。
【點評】方程是解決數(shù)學(xué)問題的重要工具,在角度的計算中運用方程思想,不僅能使解題過程簡捷明了,還可以開闊視野,提高思維能力。特別是在處理比例問題時通常設(shè)每一份為x,通過方程來解決問題。
類型2 度,分,秒之間的單位換算
例2 將31.24度化為用度,分,秒表示的形式
【分析】要將31.24度化為用度,分,秒表示的形式,只要將0.24度化為分,然后將分中的小數(shù)化為秒即可。注意,將0.24度化為分的方法是60’×0.24。
【解答】60’×0.24=14.4’,60’’×0.4=24’’,所以

【點評】進行度,分,秒之間的單位換算,要注意度,分,秒之間的換算單位,避免換算單位上的錯誤。
